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Learning objectives

 The understand the importance of (multivariate) 
statistics for data driven research

 To obtain an overview of the most commonly used 
methods for univariate and multivariate data 
analysis in (untargeted) metabolomics

 To understand the limitations of applying univariate and 
multivariate techniques to metabolomics data sets.
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Outline

 Introduction

● What is hypothesis generating research

● Structure of metabolomics data

● Univariate vs multivariate analysis

 Exploratory data analysis

● Principal component analysis

● Examples

 Discriminant analysis

● The curse of dimensionality

● Partial least squares – discriminant analysis

● Model selection and validation

● Examples
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The metabolomics pipeline
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Data driven research
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Data driven research
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Data driven research
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Data driven research
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Data driven research
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Data analysis objectives
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Overview Clustering Discriminant analysis 
/ Classification

Regression

• Trends
• Patterns
• Clusters
• Outliers
• Quality assurance
• Biological 

diversity

• Grouping of
samples and / or 
variables

• Determining 
group structure

• Identification of
subgroups

• Biological
diversity

• Pattern 
recognition

• Discriminating 
between groups

• Assigning samples 
to groups

• Biomarker 
candidates

• Predicting
continuous 
response

• Comparing blocks 
of omics data

PCA HCA, k-means MANOVA, LDA, 
PLS-DA, O-PLS-DA

PCR, PLS2, O2-PLS 



Organizing your data: the data matrix
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Data = matrix
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Plotting the data

 Line plot of each spectrum
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Plotting the data

 One variable  density plot
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Plotting the data

 Two variables  scatter plot

= multivariate analysis - variables are plotted against each other 

(instead of analysing them one at a time)

16

Variable 1

Variable 2



Plotting the data

 From data to variable space

 The whole data table produces points in variable space
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Plotting the data

 From data to variable space

 The whole data table produces a cloud of points in variable space
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Plotting the data
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We usually have more than 3 variables



Data analysis in metabolomics

Explorative (unsupervised) analysis



Principal component analysis
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Overview Clustering Discriminant analysis 
/ Classification

Regression

• Trends
• Patterns
• Clusters
• Outliers
• Quality assurance
• Biological 

diversity

• Grouping of
samples and / or 
variables

• Determining 
group structure

• Identification of
subgroups

• Biological
diversity

• Pattern 
recognition

• Discriminating 
between groups

• Assigning samples 
to groups

• Biomarker 
candidates

• Predicting
continuous 
response

• Comparing blocks 
of omics data

PCA HCA, k-means MANOVA, LDA, 
PLS-DA, O-PLS-DA

PCR, PLS2, O2-PLS 



Principal component analysis
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Variable 1

Variable 2

Variable 3

1st PC The first principal component (PC) describes the 
largest amount of variance in the data.
= direction of largest spread between the data points in variable space



Principal component analysis
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The second principal component (PC) describes the 
second largest amount of variance in the data.
= direction of largest spread between the data points in variable space orthogonal 
to PC 1.
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Principal component analysis

 PCA = rotation of the data such that the first variables 
(PCs) explain most of the variance
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Dimension reduction with PCA
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Data visualization with PCA
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Scores
• Summarize the observations
• Separate signal from noise
• Observe patterns, clusters, etc.

Loadings
• Summarize the variables
• Explain the position of the observations in the score plot
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Data visualization with PCA

27

Variable 1

Variable 2

Variable 3

1st PC

2nd PC

Variable
1 2 3

W
ei

gh
t

Loading PC 1

1 2

3

W
ei

gh
t

Loading PC 2

0

Loadings
• Summarize the variables
• Explain the position of the observations in the score plot



Example: quality assurance

28Viant, Metabolites, 7, 2017 



Example: assessment of regional differences in 

Lambrusco wines

Wines from 3 regions

 Analysed by GCxGC-MS (76 x 1208)

29



Intermezzo: common artefacts in metabolomics data

 Baseline drift

 Peak misalignments

 Unwanted peak intensity 

differences

 Noise variables

 Batch effects

 Missing values

 Unequal peak weights

 Large RSD values

 ...
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Taken from Eilers et al, Baseline Correction with Asymmetric Least Squares Smoothing (2005)



Intermezzo: why data preprocessing?

 Our analytical tools (NMR/MS) have produced multiple spectra

 Spectra must be cleaned up and processed e.g. to make:

● Spectra comparable

● Remove unwanted variation due to data artefacts

● Make variables within spectra comparable

● ...
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Example: assessment of regional differences in 

Lambrusco wines

Wines from 3 regions

 Analysed by GCxGC-MS (76 x 1208)
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Example: assessment of regional differences in 

Lambrusco wines

 Autoscaled data
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Data pre-processing can make or break MVDA!



Example: assessment of regional differences in 

Lambrusco wines
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Outlier detection

Select # PCs



Example: untargeted disease diagnosis

Current approaches in disease diagnosis

Focus on one specific (known) disease status

 Two-class models

Healthy vs disease

 One-class models

Disease model

36



Example: untargeted disease diagnosis

Approach: class model of healthy controls
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{Engel et al, PLoS One 2014}



Example: untargeted disease diagnosis

 Model health space with PCA

 Detection via Q-statistic

 Diagnosis via contribution

plots
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Example: untargeted disease diagnosis

Validation data:

 120 healthy children to construct model

 98 validation samples (other children including 42 abnormal)

● 8 different inborn errors of metabolism

● 10 abnormalities related to common medication and diet

{Engel et al, PLoS One 2014}



Example: untargeted disease diagnosis

Step 1: detection of abnormal metabotype
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Alkaptonuria disease

Paracetamol consumption

Example: untargeted disease diagnosis

Step 2: diagnosis of metabolic abnormality

{Engel et al, PLoS One 2014}



Summary – principal component analysis

 PCA provides a graphical overview of the data

 Natural starting point for data analysis to visualize trends, groupings, 
outliers, etc.

 PCA gives

● Scores: summary of observations

● Loadings: summary of variable space

 PCA is often used as a dimension reduction step before other 
statistical methods are applied
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Data analysis in metabolomics

Supervised data analysis



Discriminant analysis

44

Overview Clustering Discriminant analysis 
/ Classification

Regression

• Trends
• Patterns
• Clusters
• Outliers
• Quality assurance
• Biological 

diversity

• Grouping of
samples and / or 
variables

• Determining 
group structure

• Identification of
subgroups

• Biological
diversity

• Pattern 
recognition

• Discriminating 
between groups

• Assigning samples 
to groups

• Biomarker 
candidates

• Predicting
continuous 
response

• Comparing blocks 
of omics data

PCA HCA, k-means MANOVA, LDA, 
PLS-DA, O-PLS-DA

PCR, PLS2, O2-PLS 



Supervised statistical analysis
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“Disadvantage” PCA

 Group separation is not always observed
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Univariate data analysis
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Commonly used methods
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Start

Normal distribution?

Normal distribution 
after transformation?

Non-parametric testParametric test

Two sample t-test

one–way ANOVA

Mann-Whitney U test

Kruskal-Wallis one-
way ANOVA
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Multiple comparisons

 Typically a 5% significance level is 

employed for each statistical test that is 

carried out

● Type I errors: false positives, spurious 

results

● Type II errors: false negatives, risk of 

not identifying relevant peaks

 Risk type I error = 1 – 0.95K
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Multiple testing correction

 Bonferroni-Holm procedure controls the FWER:

● Use adjusted significance level 𝛼𝑎𝑑𝑗 ≈ 𝛼\p

● Often overly strict

● Many false negatives

 Benjamini-Hochberg procedure controls the FDR

● Controls proportion of false positives, i.e. the number of false positives 

amongst the set of significant variables

● Consequence: at the most 5% false positives amongst the set of 

significant variables
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Univariate vs multivariate analysis

Variables (metabolites) should be studied together! 

(Additionally, there is the issue of multiple-testing in univariate statistics)
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Multivariate data analysis
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Linear discriminant analysis

 Rotation of the data (similar to PCA)

 Rotation such that SSB/SSW is maximized

 Classification of (new) observations

53CV1
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Disadvantage of LDA for metabolomics

 LDA is a traditional statistical method designed for long and slim data tables

 Metabolomics data is short and fat  traditional methods break down (curse 

of dimensionality)
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PCA + LDA

 Application of LDA to PCA scores
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Data Scores
PCA LDA

Noise

+
(Potential risk: interesting 
information in left-out PCs)



Partial least squares – discriminant 

analysis

 “Linked” dimension reduction of X and Y matrix
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X YT
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Partial least squares – discriminant 

analysis (PLS-DA)

 PCA = best description

 LDA = best separation

 PLS-DA

● Describes variance in data like PCA

● Separates classes

 N.B.: “Latent Variables”
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Example: assessment of regional differences in 

Lambrusco wines

Wines from 3 regions

 Analysed by GCxGC-MS (76 x 1208)
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Example: assessment of regional differences in 

Lambrusco wines

Wines from 3 regions

 Analysed by GCxGC-MS (76 x 1208)
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Application to nonsense data

 Randomly generated data

 Two groups 

 20 observations per group

 2000 variables
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Application to nonsense data
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(Cross)-Validation
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Example: assessment of regional differences in 

Lambrusco wines

Wines from 3 regions

 Analysed by GCxGC-MS (76 x 1208)
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Permutation testing: how it works

 Permutation testing is used to assess the statistical 
significance
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Variable 1

Variable 2

1)  Fit model using 
correct class labels

2) Fit model using 
permuted class labels

Variable 1

Variable 2

3) Estimate p-value

Repeat +- 1000 x

Determine null 
distribution



Example: assessment of regional differences in 

Lambrusco wines

Wines from 3 regions

 Analysed by GCxGC-MS (76 x 1208)
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Example: assessment of regional differences in 

Lambrusco wines

 Interpretation: VIP-score

 Many other possibilities 

(target projection, selectivity ratio, simple multivariate correlation)
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Summary – partial least squares

 For classification and regression problems

 “Directed” dimension reduction (response is taken into account)

 PLS gives

● Predictions, scores, loadings, variable importance measures

 PLS is prone to overfitting  validation is crucial!
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Some words of caution

 Correlation ≠ causation

 Real, but non-causal signal?

 Spurious correlation?

 Further evidence is required
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Typical workflow

1. Data visualization with PCA

1. Study technical variability (spread QCs vs spread biological 
observations)

2. Detect outliers

3. Detect trends and clusters

2. Univariate analysis

1. Identification of (statistically) significant peaks

3. Supervised multivariate analysis (e.g. PLS-DA)

1. Identification of (statistically) significant patterns of peaks
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Thank you for

your attention! To explore
the potential
of nature to
improve the 
quality of life

Jasper Engel (jasper.engel@wur.nl)


