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Introduction (1) Presenter background

• 2005-2010: BA (Biomedical Engineering) at University of California, Irvine

– Tennis, Microfluidics, Software engineering (and beer pong)

• 2010-2017: PhD (Bioengineering Engineering) at University of California, San Diego

– Metabolomics and fluxomics method development for Mass Spec

– Multi-omics (i.e., Genomics, Transcriptomics, Phenomics, Metabolomics, and Fluxomics) 
data integration, analysis, and biochemical modeling

– Applications in microbial evolution and human health

• 2017-Present: Group Leader at the Center for Biosustainability (CfB) at the Technical 
University of Denmark (DTU)

– Automated and high throughput ”Big” metabolomics data generation, sample handling, 
acquisition, and data processing and analysis solutions using robotic liquid handlers and 
software solution

– Application of machine learning and metabolomics (and other –omics) to human health
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Introduction (2) Systems biochemistry workflow
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Case studies
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Model driven experimental design
Experimental design (1) Questions, hypotheses, or objectives

Experimental design (2) Model construction

Experimental design (3) Required data and analyses



Experimental design (1) Questions, hypotheses, 
or objectives

• What are my questions/hypotheses/objectives?

• The more clear your questions/hypotheses/objectives are the easier the downstream data 
integration and analysis will be
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Experimental design (2) Model construction

• Model:

– Describes how all –omics data types relate to one another

14



Experimental design (2) Model construction

• Model:

– Describes how all –omics data types relate to one another

– The biological system of study (e.g., Organism)

– Scope (i.e., metabolism, cell signalling, gene expression, etc.)

– Model resolution (e.g., reactions, atom mappings, kinetic parameters, etc.)

15



Experimental design (2) Model construction
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Experimental design (2) Model construction

Component

Interaction

System
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Experimental design (2) Model construction

• Model:

– Describes how all –omics data types relate to one another

– The biological system of study (e.g., Organism)

– Scope (i.e., metabolism, cell signalling, gene expression, etc.)

– Model resolution (e.g., reactions, atom mappings, kinetic parameters, etc.)

• Resources:

– Model reconstruction: http://modelseed.org/

– Published reconstructions: http://bigg.ucsd.edu/

– Biochemical databases: https://biocyc.org/
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Experimental design (3) Required data and 
analyses
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Experimental design (3) Required data and 
analyses

• What are my experimental
parameters?

– Conditions and replicates

– Controls

• What are my required analyses?

– Hypothesis test

• What -Omics data are necessary?

– Data types and number of 
features
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Case Study (1)

• Question: What are metabolic genes system’s level function? 
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Case Study (1)

• Question: What are metabolic genes system’s level function? 

• Experiments: gene KOs, adaptive laboratory evolution (ALE)

– Systems perturbation experiments in engineering: 1) perturb the system, 2) allow the 
system to recover, and 3) analyze how the system recovered
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Case Study (1)
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Case Study (1)

• Removed confounding variable of 
adaptation to the experimental 
conditions
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Case Study (1)

What can we learn?
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Case Study (1)

• Question: What are metabolic genes system’s level function? 

• Experiments: gene KOs, adaptive laboratory evolution (ALE)

– Systems perturbation experiments in engineering: 1) perturb the system, 2) allow the 
system to recover, and 3) analyze how the system recovered

• Model: E. coli MG1655 K-12
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Case Study (1)

• Question: What are metabolic genes system’s level function? 

• Experiments: gene KOs, adaptive laboratory evolution (ALE)

– Systems perturbation experiments in engineering: 1) perturb the system, 2) allow the 
system to recover, and 3) analyze how the system recovered

• Model: E. coli MG1655 K-12

• Experimental parameters: Gene KO strains and control before and after ALE
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Case Study (1) Model-driven KO selection

Reaction

ATPS4rpp 
(atpIC)

PGK

GAPD

SUCDi

GLCptspp
(ptsHIcrr)

TPI

FRD3

G6PDH2r 
(zwf)

GND

PGI

PFK

FBA

PPC
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Case Study (1)

Reaction
Sampled 

flux mean
Sampled 
flux St.D.

ATPS4rpp 
(atpIC)

56.37 0.27

PGK 19.05 0.09

GAPD 19.05 0.09

SUCDi 12.29 2.26

GLCptspp
(ptsHIcrr)

11.64 0.19

TPI 8.60 0.09

FRD3 6.66 2.15

G6PDH2r 
(zwf)

5.86 0.19

GND 5.84 0.19

PGI 5.64 0.26

PFK 3.12 0.51

FBA 3.09 0.51

PPC 3.04 0.08

1. Sampled the model to rank order the 
highest flux reactions
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Case Study (1)

Reaction
Sampled 

flux mean
Sampled 
flux St.D.

# of 
genes

Essential Expressed

ATPS4rpp 
(atpIC)

56.37 0.27 9 No Yes

PGK 19.05 0.09 1 Yes Yes

GAPD 19.05 0.09 1 Yes Yes

SUCDi 12.29 2.26 4 No Yes

GLCptspp
(ptsHIcrr)

11.64 0.19 8 No Yes

TPI 8.60 0.09 1 No Yes

FRD3 6.66 2.15 4 No No

G6PDH2r 
(zwf)

5.86 0.19 1 No Yes

GND 5.84 0.19 1 No Yes

PGI 5.64 0.26 1 No Yes

PFK 3.12 0.51 2 Yes Yes

FBA 3.09 0.51 3 No Yes

PPC 3.04 0.08 1 No Yes

2. Gene essentiality analysis to determine 
genes that can be removed
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Case Study (1)

Reaction
Sampled 

flux mean
Sampled 
flux St.D.

# of 
genes

Essential Expressed Single KO

ATPS4rpp 
(atpIC)

56.37 0.27 9 No Yes Yes

PGK 19.05 0.09 1 Yes Yes Yes

GAPD 19.05 0.09 1 Yes Yes Yes

SUCDi 12.29 2.26 4 No Yes Yes

GLCptspp
(ptsHIcrr)

11.64 0.19 8 No Yes Yes

TPI 8.60 0.09 1 No Yes Yes

FRD3 6.66 2.15 4 No No Yes

G6PDH2r 
(zwf)

5.86 0.19 1 No Yes Yes

GND 5.84 0.19 1 No Yes Yes

PGI 5.64 0.26 1 No Yes Yes

PFK 3.12 0.51 2 Yes Yes No

FBA 3.09 0.51 3 No Yes No

PPC 3.04 0.08 1 No Yes Yes

3. Experimental feasibility check
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Case Study (1)

Reaction
Sampled 

flux mean
Sampled 
flux St.D.

# of 
genes

Essential Expressed Single KO Coupled

ATPS4rpp 
(atpIC)

56.37 0.27 9 No Yes Yes

PGK 19.05 0.09 1 Yes Yes Yes GAPD

GAPD 19.05 0.09 1 Yes Yes Yes PGK

SUCDi 12.29 2.26 4 No Yes Yes

GLCptspp
(ptsHIcrr)

11.64 0.19 8 No Yes Yes

TPI 8.60 0.09 1 No Yes Yes

FRD3 6.66 2.15 4 No No Yes

G6PDH2r 
(zwf)

5.86 0.19 1 No Yes Yes PGL

GND 5.84 0.19 1 No Yes Yes

PGI 5.64 0.26 1 No Yes Yes

PFK 3.12 0.51 2 Yes Yes No

FBA 3.09 0.51 3 No Yes No

PPC 3.04 0.08 1 No Yes Yes

4. Coupling analysis to determine redundant 
KOs
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Case Study (1)

Reaction
Sampled 

flux mean
Sampled 
flux St.D.

# of 
genes

Essential Expressed Single KO Coupled Mets up Mets down

ATPS4rpp 
(atpIC)

56.37 0.27 9 No Yes Yes adp atp

PGK 19.05 0.09 1 Yes Yes Yes GAPD 3pg, atp adp

GAPD 19.05 0.09 1 Yes Yes Yes PGK nad, g3p nadh

SUCDi 12.29 2.26 4 No Yes Yes succ fum

GLCptspp
(ptsHIcrr)

11.64 0.19 8 No Yes Yes pep g6p, pyr

TPI 8.60 0.09 1 No Yes Yes dhap g3p

FRD3 6.66 2.15 4 No No Yes fum succ

G6PDH2r 
(zwf)

5.86 0.19 1 No Yes Yes PGL g6p, nadp nadph

GND 5.84 0.19 1 No Yes Yes nadp, 6pgc Ru5p, nadph

PGI 5.64 0.26 1 No Yes Yes g6p f6p

PFK 3.12 0.51 2 Yes Yes No f6p, atp fdp, adp

FBA 3.09 0.51 3 No Yes No fdp g3p, dhap

PPC 3.04 0.08 1 No Yes Yes pep oaa

5. Metabolomics coverage analysis to 
determine if nearby metabolites are possible 
to measure
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Case Study (1)

Reaction
Sampled 

flux mean
Sampled 
flux St.D.

# of 
genes

Essential Expressed Single KO Coupled Mets up Mets down Implemented

ATPS4rpp 
(atpIC)

56.37 0.27 9 No Yes Yes adp atp
No, failed using 

lambda red

PGK 19.05 0.09 1 Yes Yes Yes GAPD 3pg, atp adp No

GAPD 19.05 0.09 1 Yes Yes Yes PGK nad, g3p nadh No

SUCDi 12.29 2.26 4 No Yes Yes succ fum Yes

GLCptspp
(ptsHIcrr)

11.64 0.19 8 No Yes Yes pep g6p, pyr Yes

TPI 8.60 0.09 1 No Yes Yes dhap g3p Yes

FRD3 6.66 2.15 4 No No Yes fum succ No

G6PDH2r 
(zwf)

5.86 0.19 1 No Yes Yes PGL g6p, nadp nadph
No, failed using 

lambda red

GND 5.84 0.19 1 No Yes Yes nadp, 6pgc Ru5p, nadph Yes

PGI 5.64 0.26 1 No Yes Yes g6p f6p Yes

PFK 3.12 0.51 2 Yes Yes No f6p, atp fdp, adp No

FBA 3.09 0.51 3 No Yes No fdp g3p, dhap No

PPC 3.04 0.08 1 No Yes Yes pep oaa
No, resulted in 

auxotrophy for asp-L

6. Implementation
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Case Study (1)

• Question: What are metabolic genes system’s level function? 

• Experiments: gene KOs, adaptive laboratory evolution (ALE)

– Systems perturbation experiments in engineering: 1) perturb the system, 2) allow the 
system to recover, and 3) analyze how the system recovered

• Model: E. coli MG1655 K-12

• Experimental parameters: Gene KO strains and control before and after ALE

• Analyses: structural analysis, MFA, transcription factor perturbation analysis
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Case Study (1)

36

Phosphoglucose isomerase (pgi) KO



Case Study (1)

• Question: What are metabolic genes system’s level function? 

• Experiments: gene KOs, adaptive laboratory evolution (ALE)

– Systems perturbation experiments in engineering: 1) perturb the system, 2) allow the 
system to recover, and 3) analyze how the system recovered

• Model: E. coli MG1655 K-12

• Experimental parameters: Gene KO strains and control before and after ALE

• Analyses: structural analysis, MFA, transcription factor perturbation analysis

• Data types: metabolomics, fluxomics, transcriptomics, genomics, and phenomics
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Case Study (1)

LaCroix et al., 2015 Appl. Environ. Microbiol. 81, 17–30.38



Case Study (1)
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Case Study (1)

The most network perturbing knockouts were 
selected using a model-driven approach

Details to come…
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Case Study (1)
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Case Study (1)

Confirmation of the Experimental Design
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Data processing pipelines From raw to processed data
Data processing (1) endo-metabolomics

Data processing (2) exo-metabolomics

Data processing (3) isotope labeling

Data processing (4) proteomics

Data processing (5) transcriptomics

Data processing (6) genomics



Data processing (0) LIMS

• Systems biology supported LIMS
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Data processing (0) LIMS

• Systems biology supported LIMS
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Data processing (0) LIMS

• Systems biology supported LIMS

• Controlled vocabulary (CV)
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Data processing (0) LIMS

• Systems biology supported LIMS

• Controlled vocabulary (CV)

• General schema

– Experiment (workflow) -> sample type

– SOPs of the experiment capture important metadata in structure fields

– script to pull out and propagate/accumulate metadata chain of experimental workflows 
used to derive the sample
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Data processing (0) LIMS

• Systems biology supported LIMS

• Controlled vocabulary (CV)

• General schema

– Experiment (workflow) -> sample type

– SOPs of the experiment capture important metadata in structure fields

– script to pull out and propagate/accumulate metadata chain of experimental workflows 
used to derive the sample

• Pushes all experimental data to a data lake for “Big data” analysis

– Component_name (Feature): MetaData

– Sample_name: MetaData

– Value

– Dimensions: time, location, etc.,

– Units

48



Data processing (1/2) endo/exo-metabolomics
Pre-requisites: sampling and extraction, 
and labeled internal standards
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Data processing (1/2) endo/exo-metabolomics
Pre-requisites: LC-MS/MS method
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Data processing (1/2) endo/exo-metabolomics
Pre-requisites: LC-MS/MS method
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Data processing (1/2) endo/exo-metabolomics

• Chromatograms and spectrum to list of annotated metabolites with corresponding 
concentrations/abundances/fold changes
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Data processing (1/2) endo/exo-metabolomics

Experiment design
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Data processing (1/2) endo/exo-metabolomics

Experiment design

Extended batch design
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Data processing (1/2) endo/exo-metabolomics

Retention time (RT) 
alignment
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Data processing (1/2) endo/exo-metabolomics

Met ID from 
Spectrum
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Data processing (1/2) endo/exo-metabolomics

Quantitation
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Data processing (1/2) endo/exo-metabolomics
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Data processing (1/2) endo/exo-metabolomics
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Data processing (3) isotope labeling
Pre-requisites: LC-MS/MS method
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Data processing (3) isotope labeling
Pre-requisites: Isotope deconvolution
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Data processing (3) isotope labeling

• Chromatograms and spectrum to list of annotated metabolites with mass distribution vectors 
(MDVs)
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Data processing (1/2) endo/exo-metabolomics

Experiment design

Extended batch design
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Data processing (1/2) endo/exo-metabolomics

Experiment design

Extended batch design

• Unknown = biological samples grown with and without labeled media

• Quality control = pooled biological sample to test for compound variance

• Blank = sample matrix (without biological material) that has been through the entire sample workup

• Solvent = carryover checks

65



Data processing (3) isotope labeling

Scan types to capture
precursor and product
labeling information

10.1021/acs.analchem.5b03887
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Data processing (3) isotope labeling

Scan types to capture
precursor and product

labeling information

10.1021/acs.analchem.5b03887
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Data processing (3) isotope labeling

Scan types to capture
precursor and product

labeling information

10.1021/acs.analchem.5b03887
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Data processing (3) isotope labeling

Atom mapping of measured fragments

10.1021/acs.analchem.5b0388769



Data processing (3) isotope labeling

Chromatogram/Spectrum 
deconvolution

10.1021/acs.analchem.5b0388770



Data processing (3) isotope labeling

Chromatogram/Spectrum 
deconvolution

10.1021/acs.analchem.5b0388771



Data processing (3) isotope labeling

Conversion to MDVs

10.1021/acs.analchem.5b0388772



Data processing (3) isotope labeling
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Data processing (3) isotope labeling
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Data processing (4) proteomics

• Chromatograms and spectrum to list of annotated proteins with 
concentrations/abundances/fold changes
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Data processing (4) proteomics

• Chromatograms and spectrum to list of annotated proteins with 
concentrations/abundances/fold changes

Details:
• Same platform used for metabolomics (More to come…)
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Data processing (5) transcriptomics

• Reads to list of annotated transcripts with abundances/fold changes

77



Data processing (5) transcriptomics
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Data processing (5) transcriptomics

• Reads to list of annotated transcripts with abundances/fold changes

Details:
• Fastx for read trimming
• Bowtie for read alignment
• Samtools for sorting
• CuffLink, CuffDiff, and CuffNorm for differential expression calls and normalization, respectively
• Python/R for statistical and gene set enrichment analysis (details to come…)
• Deployed using Docker containers
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Data processing (6) genomics

• Reads to list of annotated genomic regions with variant calls
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Data processing (6) genomics

• Reads to list of annotated genomic regions with variant calls

Caveats:
• Not genome assembly, but realignment to an existing genome
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Data processing (6) genomics
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Data processing (6) genomics

• Reads to list of annotated genomic regions with variant calls

Details:
• Fastx for read trimming
• Bowtie for read alignment
• Samtools for sorting
• Breseq for variance calling
• Python/R for statistical analyses and Biopython and MVD for structural analyses (details to come…)
• Deployed using Docker containers
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Data processing Summary

Goals:

✓Fast

✓Accurate

✓Reproducible

✓Push-button
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Case Study (1)

Collected metabolomics, fluxomics, 
transtriptomics, genomics, and 
phenomics on Ref, uKO, and eKO strains
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Case Study (1)
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Case Study (1)
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Case Study (1)

Overview:

1. Primarily single nucleotide 
polymorphisms (SNPs, 66%)

2. Primarily located in coding regions 
(48%)

3. Primarily associated with membrane 
proteins and transcription factors 
(27 and 29%, respectively)
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Case Study (2)

Collected metabolomics and genomics 
30 healthy volunteers
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Case Study (2)
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Case Study (2)
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Case Study (2)

● Over 5,000 samples ran over the 

course of 6 months.

● Over 12 months with 4 people to 

process all of the raw data.
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Case Study (2)

Fast, automated, and intelligent processing of GC- and LC-MS data, and HPLC data.
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Data processing (1/2) endo/exo-metabolomics

Targeted (semi-quantitative to quantitative) and untargeted metabolomics pipeline
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Data processing (1/2) endo/exo-metabolomics

Targeted (semi-quantitative to quantitative) and untargeted metabolomics pipeline
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Data processing (1/2) endo/exo-metabolomics

Targeted (semi-quantitative to quantitative) and untargeted metabolomics pipeline
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Features: File conversion

• ProteoWizard:
• Supports open-source and most 

proprietary MS formats
• Complete conversion of SRM, MRM, 

DIA (e.g., SWATH), DDA, and Full 
Scan (precursor and/or product)

• Custom:
• HPLC text file conversion

McCloskey D, Collianni P, et al. in progress.



Features: Quantitation

• Automated calibration curve fitting
• Outlier detection with bias and R-

squared optimization
• User defined calibration model and 

acceptance criteria

• External calibration curve application
• Back calculation of sample 

concentration with or without IS



Features: Quantitation

* linear model with x and y weighting currently supported

Isotope 
dilution mass 
spectrometry 

(IDMS)



Features: Quantitation

Automated calibration curve 
optimization

McCloskey D, Collianni P, et al. in progress.



Features: Quantitation

Automated calibration curve 
optimization

Manual Automated

Acceptable fit 0.97 0.97

Time (sec) 28,800 < 1.0

Table 2: Calibration curves for 116 compounds.  Bias 
>= 30%, R >= 0.9, and minimum of 4 points.

McCloskey D, Collianni P, et al. in progress.



Features: Peak integration and selection

103

• Automated peak picking and peak selection
• Advanced peak integration and baseline detection 

models
• User defined thresholds for peak filtering
• Multi-stage, adaptive optimization algorithm for peak 

selection

McCloskey D, Collianni P, et al. in progress.



Features: Peak integration and selection

104 McCloskey D, Collianni P, et al. in progress.



Features: Peak integration and selection

105

Saturated peak

McCloskey D, Collianni P, et al. in progress.



Features: Peak integration and selection
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Cutoff peak

McCloskey D, Collianni P, et al. in progress.



Features: Peak integration and selection

107 McCloskey D, Collianni P, et al. in progress.



Features: Peak integration and selection

108

Absolute retention is susceptible to retention time shifts
LP to select the best peak based on signal intensity and absolute retention time



Features: Peak integration and selection

109

Retention difference is more robust to retention time shifts
QIP algorithm to “select” the most consistent set of peaks based on retention time 
difference



Features: Peak integration and selection

110 McCloskey D, Collianni P, et al. in progress.



Features: Peak integration and selection

111

Absolute RT Relative RT

Average 0.87 0.95

StDev 0.07 0.03

Table 1: Peak Picking and Selection validation results.  
Tested on Human RBC, Plasma, and Platelet 
metabolomics (n=1297)

McCloskey D, Collianni P, et al. in progress.



Features: Quality Control

• Flexible, user-defined peak, run, or batch 
quality control reporting



Feature: Quality Control



Feature: Quality Control

• Transition/peak level scoring system

– Shape QC:

• Total peak width, baseline delta to height

• Tailing and asymmetry factors

– Quality QC:

• Retention time, intensity, quality, etc.,

• Points across full width and half width

– Quantitation QC:

• LLOQ/ULOQ

McCloskey D, Collianni P, et al. in progress.



Feature: Quality Control

• Transition group level scoring system

– Compound ID QC: 

• Ion ratios

– # of transitions QC:

• # of Light and Heavy transitions

• # of quantifying and detection transitions

– Quality QC:

• Retention time, total intensity, total quality, etc.

McCloskey D, Collianni P, et al. in progress.



Features: DDA/DIA

• Spectrum annotation
• Spectrum filtering based on RT
• Spectrum scoring based on resolution 

and quality
• Spectrum annotation based on DB 

matching score

• DB matching
• Internal or external (.msp format)
• Contrast angle similarity score

McCloskey D, Collianni P, et al. in progress.



Automated analytics data processing

✓ A single data processing solution for metabolomics, fluxomics, and proteomics 
applications by GC-MS(/MS), LC-MS(/MS), and HPLC-UV, RI, etc.
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Automated analytics data processing

✓ A single data processing solution for metabolomics, fluxomics, and proteomics 
applications by GC-MS(/MS), LC-MS(/MS), and HPLC-UV, RI, etc.

✓ Improved accuracy and reduced of peak integration and peak selection
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Automated analytics data processing

✓ A single data processing solution for metabolomics, fluxomics, and proteomics 
applications by GC-MS(/MS), LC-MS(/MS), and HPLC-UV, RI, etc.

✓ Improved accuracy and reduced of peak integration and peak selection
✓ Integration with open-source tools for seamless integration with bioinformatics 

pipelines

119



Automated analytics data processing

✓ A single data processing solution for metabolomics, fluxomics, and proteomics 
applications by GC-MS(/MS), LC-MS(/MS), and HPLC-UV, RI, etc.

✓ Improved accuracy and reduced of peak integration and peak selection
✓ Integration with open-source tools for seamless integration with bioinformatics 

pipelines
✓ Reduced time spent in lengthy and problematic peak integration and peak review 

sessions
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Automated analytics data processing

● Before: 4 people, 1 year to 

process manually
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Automated analytics data processing

● Before: 4 people, 1 year to 

process manually

● Now: 1 person, 2 nights to 

process automatically with the 

same accuracy
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Biochemical model mapping



Biochemical model mapping

• How do I connect all –omics data features to one another?

• Resolution of the component connections

– Organ to tissue to cell to organelle
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Case Study (1)

Whole cell E. coli biochemical interaction network
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Whole cell E. coli biochemical interaction network
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Whole cell E. coli biochemical interaction network
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Case Study (1)

Whole cell E. coli biochemical interaction network
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Biochemical modeling
Modeling (1) constraint-based analysis

Modeling (2) thermodynamic analysis

Modeling (3) metabolic flux analysis (MFA)

Modeling (4) kinetic analysis



Modeling (1) constraint-based analysis

• Synopsis: mathematical approach to predict network fluxes (i.e., reaction rates) at steady-
state based on mass balance and optimization

• Pros: 

– Can incorporate little to no –omics data to make predictions

– Scalable from e.g., metabolism to whole cell models to multi-tissue models

– Provides estimations of the optimal growth, uptake, and secretion rate given a systems 
external (i.e., environment, media, etc.,) and internal (i.e., genotype) state

• Cons:

– Limited accuracy due to missing kinetic constraints

• Applications: 

– Media optimization in biotechnology

– Genotype optimization in biotechnology

– Experimental design
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Modeling (1) constraint-based analysis
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Modeling (1) constraint-based analysis
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Modeling (1) constraint-based analysis

Objective:  Find the optimal network fluxes (i.e., reaction rates) given set of 
reactions (V) and constraints
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Modeling (1) constraint-based analysis

Optimization:  Linear, Quadratic, Non-linear, or mixed integer programming

Objective:  Find the optimal network fluxes (i.e., reaction rates) given set of 
reactions (V) and constraints
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Modeling (1) constraint-based analysis

Simulate:  Predicted flux 
under 4 different conditions
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Modeling (1) constraint-based analysis

doi:10.1038/nrmicro2737137



Modeling (1) constraint-based analysis

doi:10.1038/nrmicro2737138



Modeling (1) constraint-based analysis

doi:10.1038/nrmicro2737

Flux variability analysis
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Modeling (1) constraint-based analysis

doi:10.1038/nrmicro2737

MCMC sampling

Flux variability analysis
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Modeling (1) constraint-based analysis
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Modeling (1) constraint-based analysis

doi:10.1038/nrmicro2737

MCMC sampling

Thermodynamic FBA

Flux variability analysis
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Modeling (2) thermodynamic analysis

• Synopsis: addition of thermodynamic constraints using metabolomics data to constrain
reaction directionality

• Pros: incorporates metabolomics data directly into the optimization problem

• Cons: requires compound heats of formation data

• Applications:

– Quality control of metabolomics data to determine thermodynamic feasibility

– Model minimization for MFA analysis

– Sample missing metabolomics data that is thermodynamically feasible
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Modeling (2) thermodynamic analysis
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Case Study (3)
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Modeling (3) metabolic flux analysis (MFA)

• Synopsis: utilizes isotope labeling information to back calculate the most consistent fluxes
given a set of reactions

• Pros: 

– The most accurate way to calculate intracellular fluxes

• Cons:

– Requires an atom mapping for all reactions

– Often constrained to small reaction networks

– Expensive both in terms of instrumentation and raw material required for the experiments

• Applications:

– Optimization of carbon/nitrogen flow in biotechnology

– Understanding the transfer of metabolites between compartments, cells, and tissues
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Modeling (3) metabolic flux analysis (MFA)

Based on Fig. 2 from doi: 10.1007/978-1-62703-299-5_18

MFA methodologies
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Modeling (3) metabolic flux analysis (MFA)

DOF = free fluxes  - measured fluxes - measured fragment isotopes

Choice of model scope
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Modeling (3) metabolic flux analysis (MFA)

Traditional/Core
• Accounts for the minimal amount of 

metabolism

• Fast simulation time

• Atom mapping is readily available

• Fewer reactions = greater DOF

DOF = free fluxes  - measured fluxes - measured fragment isotopes

Choice of model scope
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Modeling (3) metabolic flux analysis (MFA)

Traditional/Core
• Accounts for the minimal amount of 

metabolism

• Fast simulation time

• Atom mapping is readily available

• Fewer reactions = greater DOF

Genome-scale
• Accounts for cofactor usage, biosynthesis, 

and salvage

• Slow simulation time

• Atom mapping is not always available

• More reactions = less DOF

• Requires additional measurements to 
generate a statistically significant fit

DOF = free fluxes  - measured fluxes - measured fragment isotopes

Choice of model scope
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Modeling (3) metabolic flux analysis (MFA)

Calculate:  Measured flux 
under 4 different conditions
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Modeling (3) metabolic flux analysis (MFA)
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Case Study (1)
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Case Study (1)
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Case Study (1)
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Modeling (4) kinetic analysis

• Synopsis: mechanistic model of biochemical interactions that provides information on system 
dynamics

• Pros: 

– As mechanistic as one can get in describing how biological entities interact

– Predictions can be the most accurate

• Cons: 

– Requires multiple –omics data types

– Requires knowledge of enzyme kinetic parameters including reaction mechanisms

– Difficult to scale to large networks*

• Applications:

– Flux and enzyme kinetics optimization in biotechnology

– Cell signaling

– Studies of enzyme kinetics between organisms

– Affect of genomic variants on enzyme activity and regulation
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Modeling (4) kinetic analysis

DOI:10.1016/j.biotechadv.2017.09.005160



Modeling (4) kinetic analysis

DOI:10.1016/j.biotechadv.2017.09.005161



Modeling (4) kinetic analysis
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Modeling (4) kinetic analysis
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Case Study (2)
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Case Study (2)
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Case Study (2)
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Statistics
Statistics (1) data imputation, normalization and exploration

Statistics (2) profiles and correlation



Statistics (1) data imputation, normalization and 
exploration
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exploration
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Statistics (1) data imputation, normalization and 
exploration
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Statistics (2) profiles and correlation

• Provides an unbaised means to compare different –omics data across time or experimental 
conditions that can be independent of known biochemical mechanisms
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Statistics (2) profiles and correlation

• Provides an unbaised means to compare different –omics data across time or experimental 
conditions that can be independent of known biochemical mechanisms

• First step towards greater mechanistic understanding of biology
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Case Study (1)
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Case Study (1)

Metabolomics
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Case Study (1)

Transcriptomics
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Case Study (1)
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Case study (1)
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Case study (1)
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1. Inputs



Case study (1)
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2. Create an on/off interaction network between all 
metabolic and regulatory components



Case study (1)
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3. Determine the agreement between component 
profiles and known regulatory/metabolic interactions



Case study (1)

4. Construct unknown component category from 
known component categories

190



Case study (1)

191

Calculate the activity of unmeasured components (i.e., 
transcription factor activation/deactivation status) 
based on expression of target operons and genes



Case study (1)
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What is the consensus activation profile for a given 
regulator based on target gene expression profiles?



Case study (1)
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What is the agreement between measured data and 
literature derived biochemical interaction networks?



Visualization and sharing
Visualization (1) from static figures to dynamic dashboards

Visualization (2) view sharing



Visualization (1) from static figures to dynamic 
dashboards
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Visualization (1) from static figures to dynamic 
dashboards

• Deployment

• Database and application

• Webserver

• Browser-based GUI

196



Visualization (1) from static figures to dynamic 
dashboards

• Software requirements

– Database

– Web server

– Browser based rendering
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Visualization (1) from static figures to dynamic 
dashboards

• Software requirements

– Database

– Web server

– Browser based rendering

• Dashboard requirements

– Plotting library

– View and modify data in table views

– Filtering and sorting capabilities

– Real-time plot (and board) updates

– Resizing and moving of dashboard elements
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Visualization (2) view sharing

• Software requirements

– Data format that describes the dashboard layout and applied filters

– Encryption

– Support for static link sharing or file sharing
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Case Study (1/2/3)

• Browser-based dashboards and UIs based on a dynamic “tile” layout

✓ Filtering

✓ Moving tiles

✓ Messaging

✓ Sharing
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Conclusion
Conclusion (1) Future trends

Conclusion (2) Re-cap



Conclusion (1) Future trends

• Automation

– Sample handling

– Data processing
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• Automation
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• Automation

– Sample handling

– Data processing
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Conclusion (1) Future trends

• Automation

– Sample handling

– Data processing

• “Big Data”

– Data aggregation

– LIMS

– High throughput computing (HTC)
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Conclusion (1) Future trends

• Automation

– Sample handling

– Data processing

• “Big Data”

– Data aggregation

– LIMS

– High throughput computing (HTC)

• Data analysis

– Modeling

– Machine Learning

– Dynamic visualization

214



Conclusion (2) Re-cap

215

1. Multi-omic data integration and analysis architecture

2. Case studies

3. Model driven experimental design

4. Data processing pipelines

5. Biochemical model mapping

6. Biochemical modeling

7. Statistics

8. Visualization and sharing

9. Conclusion
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Upcoming events

Clinical Metabolomics Copenhagen 2018
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Dates: Oct 25-26th, 2018

Location: Copenhagen, DK

Will be announced on 
www.eventbrite.com by 

mid July

http://www.eventbrite.com/
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