Quality Control Principles in Sample Preparation

John W. Newman
&
Theresa L. Pedersen

USDA
Western Human Nutrition Research Center
Davis, CA
Sample Preparation Issues are Multifaceted

- Points to consider
 - Method Robustness *(Before You Touch A Sample)*
 - QA measures must control for variance from sampling to quantification.
 - Consider Analyte Interactions / Solubility / Stability
 - Sample Collection *(Preventing Artifacts And Losses)*
 - Sub-sampling *(Accounting For Sample Heterogeneity)*

- Data quality depends on sample handling
Minimum Quality Control Requirements

- Robust and reproducible performance based methods
 - Procedural corrections for losses
 - Surrogates correct for analyte losses
 - Internal standards correct for instrumental variance
 - Assess precision and accuracy
 - Reference Material assess accuracy
 - Analytical Replicates assess precision
Method Optimization: Pitfalls in Published Methodology

• Validate published methods BEFORE running samples

 – Undisclosed variables can be critical
Method Optimization: Pitfalls in Published Methodology

e.g. Surrogate Spiking Procedures

- To correct for analyte losses, surrogates **must be added** **BEFORE** initial processing step.
Method Optimization: **Surrogate Selection**

- **Surrogates should behave** like analytes throughout the method
 - Stable isotopes are safest but …
 - Polarity & Solubility
 - A range of compounds to cover physical properties of targets may provide a viable suite of surrogates
Method Optimization: Internal Standard Selection

Correcting For Instrument Variance

Cyclohexyl-dodecyl-urea

- robust ESI-LC/MS ISTD
- moderately hydrophobic
- positive and negative mode
Method Optimization:
Derivatization Issues

- **Confirm time to completion** WITH SAMPLES
 - e.g. Hindered alcohols

- **Are underivatized targets stable?**
 - If fingerprinting, use gentle derivatizations (i.e. room temp, pH neutral) or none at all.

- **Know the chemistry!!!**
Method Optimization & Calibration Pitfalls: Poor Manufacturing Quality

• IF AVAILABLE, metabolites can be expensive, but this does not mean purchased materials can be trusted.

• Confirm purity BEFORE preparing calibrants

EXAMPLE

• Targeted profiles of ~90 oxylipids using dilute solutions w/o certificates of analysis from a handful of sources as primary calibrants.

• Major discrepancies between 2003 & 2007 analyte lots – 8% to 233% theoretical.
Calibration Pitfalls: Commercial Variability

Calibrants stored under inert gas at -80°C in ampuled 0.5mL aliquots until analysis.
Calibration Pitfalls: Addressing the Issue

• Always check the quality of new standards against old.

• Manufacturer Quality Control Guidelines
 – Certificate of analysis
 – Lot Purity
 – Request Sealed ampules

WE MUST DEMAND QUALITY MATERIALS
Calibration Pitfalls: “Quantifying” Unknowns

i.e. *Pseudo-quantitation*

- Calibration establishes the detector’s concentration-dependent response

- Unknowns can be “quantified” using response factors of known compounds

- Quantitative changes within a study

![Graph showing calibration and quantification of unknowns and knowns](graph.png)
Method Performance: Replicate Precision

Precision criteria should be set with respect to the analyte limit of quantitation (LOQ).

Criterion For this Assay

>80% analytes
>3xMDL with precision <20%

Remember the LOQ is a function of extracted mass !!!!
Method Performance:
Reference Material Analysis

Continuous Accuracy
Evaluations can provide actionable method Control Criterion

<table>
<thead>
<tr>
<th>Events</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>> ± 3s</td>
<td>> 1 consecutive</td>
</tr>
<tr>
<td>> ± 2s</td>
<td>> 2 consecutive</td>
</tr>
<tr>
<td>> ± 1s</td>
<td>> 3 consecutive</td>
</tr>
</tbody>
</table>
Sample Handling Considerations: *Randomizing to Control for Systematic Bias*

- Spread experimental samples / ages / treatments across extraction and analysis batches
 - Identify batch specific problems
 - Prevent bias due to systematic drift over time

- Blind analyst to:
 - Treatments
 - Replicates
Pitfall In Analysis:
Surrogate Purity

Analyze surrogates and internal standard spiking solutions as controls in each batch.

![Graph showing EKODE Plasma Concentrations by Extraction Method/Matrix]

- **Deuterated Surrogate Contaminated With Endogenous Analyte**
Sample Handling Considerations: Sample Heterogeneity

- When reducing sample size, you should evaluate how small can you go and ...
 - Minimize transfer steps
 - Increase rinses at transfers
 - Compare replicate precision with larger samples

- Homogenizing before sampling vs. after?
 - Homogenizing first can reduce sampling bias
 - Can loose information in heterogeneity
 - Kidney Cortex vs. Medula
 - High local metabolite densities
Sample Handling Considerations:
Ex vivo Metabolite Destruction/Production

- Biological and chemical factors can destroy analytes during all sample handling steps.

Targeted Analyses = Targeted Preventive Measures

Fingerprinting = Broad Preventive Measures
Sample Handling Considerations: *Ex vivo* Metabolite Destruction/Production

Examples of Issues and Actions

- **Freeze/Thaw Stability**
 - Fluids: Sub-aliquot on initial collection
 - Tissues: Sub-sample frozen (cut sample on a block of dry ice)

- **Enzymatic Action - Lipase, protease, cyclooxygenase**
 - Add inhibitors to sub-aliquots
 - Orlistat – carboxy esterase inhibitor
 - Phenyl methyl sulfonyl fluoride – serine proteinase inhibitor
 - Naproxen – COX1 and COX2 inhibitor

- **Preventing Autooxidation**
 - Butylated hydroxy toluene
 - Triphenylphosphene - reducing agent to quench peroxidation
Sample Handling Considerations: Blood Handling and Plasma Preparation

- **Serum Coagulation:**
 - Time and Temperature make a difference

- **Controlling for Plasma Hemolysis**
 - Collect with large bore needle and slow draw
 - Slow spin (1000G, 20 min @ °4C)
 - Record plasma color and look for correlating metabolites
 - e.g. Thromboxane B2 & 12-HETE ↑ with hemolysis
Sample Handling Considerations: *Urine Samples*

- **Frozen urine samples form precipitates when thawed**
 - Return to body temp (37°C) … THEN ALIQUOT

- **Disease can effect solvent compatibility.**
 - *e.g.* Insoluble components in ACN
 - Healthy rat OK
 - Renal failure … Bad Idea!!!!! Insoluble precipitate

- **Elimination of Conjugates**
 - Glucuronides / sulfate / glycine/ etc. …
 - Consider analysis w/ & w/o Glucuronidase / sulfatase
 - Run boiled enzyme reaction control

 - Species specific
Sample Preparation: Reducing Matrix Interference

- Ionization Interferences (e.g. Phospholipids)
- Adduct formation (e.g. Salts, acids)
- Co-eluting impurities (e.g. pthalates, siloxanes)
- pH Effects (e.g. chromatographic tailing, chemical shift instability)

Solutions
 - Dilution
 - noise vs. signal reduction
 - Change chromatography (phase, pH, derivative, etc)
 - Cleanup
 - Analyte / interferant differential solubility
 - Fractionation
Metabolomics-based Investigations Can Address Questions in Many Matrices

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Goal</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine</td>
<td>Identifying Pathology</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>Quantifying Responsiveness</td>
<td></td>
</tr>
<tr>
<td>Tissue</td>
<td>Comparative Biochemistry</td>
<td></td>
</tr>
</tbody>
</table>

- The quality of the data is only as good as the sample handling and preparation